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The evaluation of the number of attractors in Kauffman networks by Samuelsson and Troein is generalized
to critical networks with one input per node and to networks with two inputs per node and different probability
distributions for update functions. A connection is made between the terms occurring in the calculation and
between the more graphic concepts of frozen, nonfrozen, and relevant nodes, and relevant components. Based
on this understanding, a phenomenological argument is given that reproduces the dependence of the attractor
numbers on system size.
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I. INTRODUCTION

Boolean networks are often used as generic models for
the dynamics of complex systems of interacting entities, such
as social and economic networks, neural networks, and gene
or protein interaction networks �1�. The simplest and most
widely studied of these models was introduced in 1969 by
Kauffman �2� as a model for gene regulation. The system
consists of N nodes, each of which receives input from K
randomly chosen other nodes. The network is updated syn-
chronously, the state of a node at time step t being a Boolean
function of the states of the K input nodes at the previous
time step, t−1. The Boolean updating functions are ran-
domly assigned to every node in the network, and together
with the connectivity pattern they define the realization of
the network. For any initial condition, the network eventu-
ally settles on a periodic attractor. Thus the number and the
lengths of the attractors are important features of the net-
works. Of special interest are critical networks, which lie at
the boundary between a frozen phase and a chaotic phase
�3,4�. In the frozen phase, a perturbation at one node propa-
gates during one time step on an average to less than one
node, and the attractor lengths remain finite in the limit N
→�. In the chaotic phase, the difference between two almost
identical states increases exponentially fast, because a pertur-
bation propagates on an average to more than one node dur-
ing one time step �5�. Based on computer simulations, the
mean attractor number of critical K=2 Kauffman networks
with a constant probability distribution for the 16 possible
updating functions was once believed to scale as �N �2�.
With increasing computer power, a faster increase was seen
�linear in �6�, “faster than linear” in �7�, stretched exponen-
tial in �8,9��. Then, in a beautiful analytical study, Samuels-
son and Troein �10� have proven that the number of attrac-
tors grows indeed faster than any power law with the
network size N. A proof that the number and length of attrac-
tors of critical K=1 networks increases faster than any power
law was published some time later �11�. These two proofs,
although they apply to closely related systems, are concep-
tually different. The latter derives structural properties of the
relevant part of the networks, and obtains from there a lower
bound for the number of attractors. In contrast, in �10� the
mean number of attractors is obtained by a direct calculation

that uses the saddle-point approximation, and which yields
no graphic understanding of how the attractor numbers arise.

It is the purpose of the present article to show how the
attractor numbers arise in terms of the relevant parts of the
networks. To this aim, the method chosen by Samuelsson and
Troein is in the next section applied to the critical K=1 net-
works, for which an intuitive understanding already exists.
The dependence of attractor numbers on system size N can
indeed be reproduced by phenomenological arguments based
on this understanding. In Sec. III, it is shown that these net-
works are similar in many respects to critical K=2 networks,
of which a more general class than usual will be defined.
Applying the calculation to this more general class leads
eventually to a phenomenological argument that reproduces
the dependence of attractor numbers on system size.

II. CRITICAL NETWORKS WITH ONE INPUT PER NODE

Let us first consider critical networks with connectivity
K=1. A random network with one input per node is critical if
among the four possible Boolean functions only the two non-
frozen ones, “copy” and “invert,” are chosen. In �11,12�, ex-
act results for the topology of K=1 networks are derived.
The network consists of the order of ln�N� unconnected com-
ponents, each of which contains a loop of relevant nodes,
and trees rooted in these loops. Relevant nodes are defined as
those nodes whose state is not constant and that control at
least one relevant element �9�. They determine the attractors
of the system. The number of loops of size l is Poisson
distributed with a mean 1/ l, if l is smaller than a cutoff size
lc. The cutoff loop size scales as lc��N �11,12�.

Following the calculation by Samuelsson and Troein �10�,
we calculate in the following the mean number of attractors
of length L. More precisely, we calculate the mean number
of cycles in state space. While an attractor is always a cycle
in state space, the reverse is not necessarily true, since an
attractor must be accompanied by a shrinking state space
volume. However, for the networks discussed in this paper,
cycles are almost always attractors, since the dynamics on
the trees rooted in the loops is being slaved to the dynamics
on the loops, and therefore the initial states of the trees will
be forgotten. For every network that contains trees, the num-
ber of initial states that leads to a given cycle is larger than
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the period of the cycle, and the cycles are attractors.
Let �CL�N denote the mean number of cycles in state space

of length L, averaged over the ensemble of networks of size
N. On a cycle of length L, the state of each node goes
through a sequence of 1s and 0s of period L. Let us number
the 2L−1 possible sequences of period L of the state of a node
by the index j, ranging from 0 to m−1	2L−1−1, with se-
quence 0 being the constant one. Following Samuelsson and
Troein, we consider two sequences as identical if they can be
transformed into each other by exchanging 1s and 0s. This
simplifies the calculation a lot, since the sequence of the
node from which a node with sequence j receives its input,
can only be one sequence, which we denote ��j�. It is ob-
tained from j by taking the first bit of j and moving it to the
end of the sequence. Whether the Boolean function at a node
is “copy” or “invert,” has now become irrelevant, and all
results obtained in this section apply therefore to critical
K=1 networks with a proportion p of “copy” functions and a
proportion 1− p of “invert” functions, for any value of p.

If nj is the number of nodes that have the sequence j on a
cycle of length L, and n the vector �n0 , . . . ,nm−1�, then

�CL�N =
1

L


n
�N

n
�

j=0

m−1 �n��j�

N
�nj

, �1�

where � N
n

� denotes the multinomial N! / �n0! . . .nm−1!�, i.e., the
number of different ways to assign the sequences 0 to m−1
to n0 , . . . ,nm−1 nodes. The factor 1 /L occurs because any of
the L states on the cycle could be the starting point, and the
product is the probability that each node with a sequence j is
connected to a node with the sequence ��j�. For sufficiently
large N, all nj will be large, and we can apply Stirling’s
formula nj!= �nj /e�nj�2�nj. Transforming the variables from
n to x=n /N, we can replace the sum with an integral and
obtain

�CL�N �
1

L
� N

2�
��m−1�/2� dx

eN
jxj ln�x��j�/xj�

 j=0

m−1 �xj

. �2�

Itegration space is limited by the condition 
 jxj =1 �with all
xj �0�. The integral is evaluated using the saddle-point
approximation, which becomes exact in the thermody-
namic limit N→�. The maximum of the expression

 jxj ln�x��j� /xj� is obtained when x��j�=xj for all j. This
means that all members of a permutation set of the type
�j ,��j� ,�(��j�) , . . . �, occur equally often at the saddle point.
This can be understood from the topological structure of
K=1 networks. All nodes that are on the same component,
must undergo a sequence belonging to the same set, while
different components are independent from each other. Fur-
thermore, on a loop or an infinitely long line of nodes, every
member of the set occurs equally often, since between nodes
with identical sequences, there must be nodes with all the
other sequences from the set. The deviation from x��j�=xj

evaluated below comes from the fact that the branches of the
trees have a finite length, which is generally not a multiple of
the set size.

Let the index h count the permutation sets, with h
=0, . . . ,HL−1. Let �L

h be the set with index h, which has ��L
h�

members. In order to perform the saddle point integration,
we make a transformation of variables within each set, de-
fining zh=
 j��L

hxj, and �xj =xj −zh / ��L
h�, with 
 j��L

h�xj =0.
Only ��L

h�−1 of all the �xj within a set are independent.
Expanding to second order in the �xj, we obtain for the

exponent in �2�



j��L

h

xj ln
x��j�

xj
= 


j��L
h
� zh

��L
h�

+ �xj�ln� 1 +
��L

h�
zh

�x��j�

1 +
��L

h�
zh

�xj
�

�
��L

h�
zh



j��L

h

�xj��x��j� − �xj�

= −
1

2

��L
h�

zh



j��L
h

��x��j� − �xj�2 �3�

and


i��L

h

�xj�−1/2 � � zh

��L
h��

−��L
h�/2

.

In the last equation, terms containing ��xj�2 vanish in the
limit N→�, since the saddle-point integration gives contri-
butions only from values �xj of the order of 1 /�N.

The integral over the �xj can be performed by using the
variables ��x��j�−�xj�, leading to

�CL�N �
1

L
� N

2�
��m−1�/2


h ��

dzh

��L
h�

� zh

��L
h�2�

��L
h�/2

� 2�zh

��L
h�N�

���L
h�−1�/2�

=
1

L
� N

2�
��HL−1�/2


h
� 1

��L
h�
� dzh

1
�zh

� . �4�

Integration space is given by the condition 
hzh=1 �with all
zh�0�.

Let us now interpret the N-dependence in this result. To
this purpose, we derive the number of attractors of length L
from the known topological properties of K=1 networks. As
mentioned above, the network consists of the order of ln N
components, each of which contains a loop and trees rooted
in the loops. The cutoff in loop size is lc��N. The number
of states on a loop of size l that belong to a cycle of length L
is denoted kl. The average of kl over an l-interval of size L is

k̄l=HL. As mentioned above, the number nl of loops of size l
is Poisson distributed with a mean 1/ l, leading to
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L�CL�N � 

�nl�


l�lc

� e−1/l�1

l
�nl

nl!
kl

nl�
= 


�nl�

l�lc

� e−1/l� kl

l
�nl

nl!
�

� 
l�lc

e�kl−1�/l = e�1
lc�kl−1�dl/l

� e�k̄l−1��1
lcdl/l

� e�HL−1�ln �N = N�HL−1�/2. �5�

The mean number of attractors of length L scales as the
number of relevant nodes, �N �which is proportional to the
number of nodes in the largest loop�, to the power HL−1. We
will see below that an equivalent statement can be made for
the K=2 critical networks. In order to obtain also the
N-independent prefactor in Eq. �4�, the full probability dis-
tribution of the number of loops of a size of the order of lc
would have to be taken into account in calculation �5�, in-
stead of simply integrating up to lc.

Let us conclude this section by discussing the implica-
tions of the fact that we do not discriminate between se-
quences that can be transformed into each other by exchang-
ing 1s and 0s. The numbers and the periods of the attractors
are determined by the loops in the network. We call a loop
“even” if it contains an even number of “invert” functions,
and “odd” if it contains an odd number of “invert” functions.
The state of an even loop of size l is the same after l updates,
while the state of an odd loop of size l is inverted after l
updates. If l is a prime number, the period of a cycle on an
odd loop is 2l, with the second half of the cycle being ob-
tained from the first half by exchanging 0s and 1s. However,
our rules defined above �and in �10�� classify this as a cycle
of period l, since assigning only the first half of a sequence to
the nodes on the loop, makes a contribution to Eq. �1� if l is
a multiple of L. Furthermore, exchanging the 1s and 0s on a
component does not lead to a new cycle according to our
calculation, but in reality this doubles the number of cycles.

Repeating calculation �5� for a system with only “copy”
functions and by discriminating sequences that can be trans-
formed into each other by exchanging 1s and 0s, the result
remains the same, but with HL now counting the true number
of invariant sets.

For a system that contains also “invert” functions, the
calculation becomes more complicated, since the mean num-

ber of states of a loop belonging to a cycle of length L is no
longer HL. Let HL again count the number of true invariant
sets. The probability that a loop has a given cycle is now
1/2��h

L� if the second half of the cycle is not obtained from
the first half by exchanging 1s and 0s. Otherwise, the prob-
ability is 3 /2��h

L�. The mean number of states on a loop that
belong to a cycle of length L is therefore HL /2 for odd L and
HL /2+HL/2 for even L, and these two expressions replace the
HL in the exponent in �5� for odd and even L respectively.

III. A GENERAL CLASS OF CRITICAL K=2
NETWORKS

Now, let us consider K=2 networks, where each node has
2 randomly chosen inputs. The 16 possible update functions
are shown in Table I.

The update functions fall into four classes �5�. In the first
class, denoted by F, are the frozen functions, where the out-
put is fixed irrespectively of the input. The class C1 contains
those functions that depend only on one of the two inputs,
but not on the other one. The class C2 contains the remaining
canalyzing functions, where one state of each input fixes the
output. The class R contains the two reversible update func-
tions, where the output is changed whenever one of the in-
puts is changed. Critical networks are those where a change
in one node propagates to one other node on an average. A
change propagates with probability 1 /2 to a node that has a
canalyzing update function C1 or C2, with probability zero to
a node that has a frozen update function, and with probability
1 to a node that has a reversible update function. Each node
has two outputs on average. Consequently, if the frozen and
reversible update functions are chosen with equal probability,
the network is critical. Usually, only those models are con-
sidered where all 16 update functions receive equal weight.
We now consider the larger set of models where the frozen
and reversible update functions are chosen with equal prob-
ability, and where the remaining probability is divided be-
tween the C1 and C2 functions. Those networks that contain
only C1 functions are different from the remaining ones.
Since all nodes respond only to one input, the link to the
second input can be cut, and we are left with a critical K
=1 network, which was discussed in the previous section.
We shall see below that all the other models, where the
weight of the C1 functions is smaller than 1, fall into the
same class, where the number of attractors is given by the
expression derived in �10� and reproduced below.

For all these critical K=2 networks, the mean number of
attractors of length L is given by the expression �10�

TABLE I. The 16 update functions for nodes with 2 inputs. The first column lists the 4 possible states of
the two inputs, the other columns represent one update function each, falling into four classes.

In F C1 C2 R

00 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0

01 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1

10 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1

11 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0
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�CL�N =
1

L


n
�N

n
�

j
�


l,k

nlnk

N2 �PL�l,k
j �nj

, �6�

with �PL�l,k
j being the probability that a node that has the

input sequences l and k generates the output sequence j. This
expression is the obvious generalization of Eq. �1� to two
inputs per node. Using again Stirling’s formula and replacing
the sum with an integral, this leads to the generalization of
Eq. �2�, see �10�

�CL�N �
1

L
� N

2�
��m−1�/2� dx

eN
ixi ln� 1
xi


j,kxjxk�PL�jk
i �

i
�xi

. �7�

For a network with only C1 functions, this reduces immedi-
ately to Eq. �1�. The exponent has its maximum at zero, and
this value is reached only if �10�

xi = 

j,k

xjxk�PL� jk
i for all i . �8�

This condition is satisfied for x0=1. For a network with only
C1 functions, it is more generally satisfied for x��i�=xi �for all
i�. For all other critical networks, there exists only the maxi-
mum at x0=1. This is shown as follows: Eq. �8� can be
transformed into



i�0

xi = 

i�0

x0
2�PL�00

i + 2 

i,j�0

x0xj�PL� j0
i + 


i,k,j�0
xjxk�PL� jk

i ,

1 − x0 = 2x0

j�0

1

2
xj + 


i,k,j�0
xjxk�PL� jk

i

� x0�1 − x0� + �1 − x0�2 = 1 − x0. �9�

Here, we have used �PL�00
j =0 for j�0 and 
 j�0�PL�i0

j =1/2
for all considered models. The inequality becomes an equal-
ity only if x0=1, or if 
i,k,j�0xjxk�PL� jk

i = �1−x0�2. The latter
condition is satisfied if and only if all �PL� jk

0 with j, k�0 and
xj, xk�0 vanish. They cannot vanish if there are frozen up-
date functions. They do vanish if there are only C1 update
functions. It remains to be shown that they cannot vanish for
a system containing C2 functions, but no frozen functions.
Assume xi�0. Since a node with two input sequences i has
nonconstant output sequences �one of which we denote by ii�
with a positive probability, there occurs a term xixii�PL�i,ii

j .
Now, the sequences i and ii taken together, have only 2 out
of the 4 possible combinations of 2 bits. However, among
the C2 functions there are functions that yield a constant out-
put if the input is i and ii. Therefore even in a C2 network,
not all �PL� jk

0 with j, k�0 and xj, xk�0 vanish. We thus have
shown that all considered critical K=2 networks satisfy �8�
only at x0=1. For large N, only small values xj �for j�0�
contribute to the integral in �7�, and a Taylor expansion in the
xj �for j�0� gives �10�

�CL�N �
1

L
� N

2�
�m/2� dxeNf�x� �10�

with

f�x� � 

i�0

xi ln
x��i�

xi
+ 


i

xi

x · AL
i x

x��i�
−

1

2 

i�0

xi�x · AL
i x

x��i�
�2

,

�11�

where �AL
i � jk= �PL� jk

j − 1
2 �� j��i�+�k��i��. For a C1 network, the

matrix �AL
i � vanishes, and we obtain again �2�. The maximum

of f�x� is obtained when x��i�=xi for all i. At this maximum,
the first and second term vanish, and the third term is of the
form Nx3. Consequently, only values xi �with i�0� up to the
order N−1/3 contribute to �CL�N. This means that the propor-
tion of nodes that are not frozen on an attractor is of the
order N−1/3, and the total number of nonfrozen nodes is of the
order N2/3. This is in contrast to the critical K=1 network,
where a nonvanishing proportion of nodes is nonfrozen.
Changing the variables again to zh=
i��L

hxi, and �xi=xi

−zh / ��L
h�, the integration over the �xi gives now

�CL�N �
1

L
� N

2�
��HL−1�/2


h�0

� � dzh

���L
h�2zh

�e−
h�0�N�z · BL
hz�2/2zh�

�12�

with �BL
h� jk= �PL�� jk

h − 1
2 �� jh+�kh�, and with �PL�� jk

h being the
probabity that the output sequence belongs to set h if the
input sequences belong to the sets j and k. Introducing a new
variable yh=zhN1/3, we obtain an additional factor N−�HL−1�/6,
and the mean number of cycles of length L becomes �10�

�CL�N �
1

L

N�HL−1�/3

�2���HL−1�/2 
h�0

� � dyh

���L
h�2yh

�e−
h�0��y · BL
hy�2/2yh�.

�13�

While integration space for the zh was restricted by the con-
dition 
hzh=1−x0, there is no constraint for the yh.

With the understanding gained from the K=1 critical net-
works, we can interpret the calculation as follows. The dif-
ference between K=1 and K=2 critical networks comes from
the fact that in the K=2 networks only the fraction N−1/3 of
nodes is nonfrozen. This modifies the exponent of N in the
final result, and this leads to the different form of the zh
integration. Both types of networks have in common that the
main contribution to the integral comes from the neighbor-
hood of the subspace satifsying x��i�=xi for all i. This means
that the majority of nonfrozen nodes receive input from one
nonfrozen node, the other input being frozen. The nonfrozen
part of a K=2 critical network resembles therefore a K=1
critical network. The proportion of nonfrozen nodes receiv-
ing input from two nonfrozen nodes, cannot be larger than of
the order N−1/3, since the �xi that make a nonvanishing con-
tribution to the saddle point integration are of the order N−1/3.
Thus, the nonfrozen part of a K=2 critical network differs
from a K=1 critical network by a proportion N−1/3 of non-
frozen nodes having two nonfrozen inputs. Apparently, this
difference does not affect the scaling of �CL�N with the num-
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ber of relevant nodes, but only the L-dependent prefactor. If
the number of relevant nodes scales as N1/3 �as is numeri-
cally found in �7��, the law

�CL�N � N�HL−1�/3

means that the mean number of attractors of length L scales
as the number of relevant nodes, N1/3 �which is proportional
to the number of nodes in the largest component�, to the
power HL−1. It can be obtained by a phenomenological ar-
gument similar to the one used in the previous section. As-
sume there are N1/3 relevant nodes arranged in �ln N com-
ponents. Since at most the proportion N−1/3 of nonfrozen
nodes have two nonfrozen inputs, only a finite number of
relevant nodes have two nonfrozen inputs, and all relevant
components apart from a finite number are loops without
additional links, just as for the K=1 critical network. The
number of states on a component of size l that belong to a
cycle of length L is again denoted with kl. We have again

k̄l=HL for components that are loops, if we average over an
l-interval of size L. If the number nl of relevant components
of size l	 lc�N1/3 is Poisson distributed with a mean 1/ l,
we obtain

L�CL�N � 

�nl�


l�lc

� e−1/l�1

l
�nl

nl!
kl

nl� � e�HL−1�ln N1/3
= N�HL−1�/3.

�14�

In order to obtain also the other factors of Eq. �13�, the full
probability distribution of the number of components of a
size of the order of lc and the structure of these components
would have to be taken into account in calculation �14�, in-
stead of simply integrating up to lc. From calculation �14�,
we can conclude that all relevant components the size of
which is sufficiently far below the cutoff lc are simple loops.
Indeed, the relevant nodes with two inputs are most likely to
sit in the large components.

IV. CONCLUSIONS

In this paper, we have considered the mean number of
attractors of length L for critical K=1 and K=2 networks.
We have applied the method by Samuelsson and Troein �10�
and have interpreted the results in terms of the topological

properties of the nonfrozen part of the network. For the K
=1 networks, the dependence of the number of attractors of
length L on the system size N, �CL�N�N�HL−1�/2 could be
understood as resulting from the network containing of the
order of N1/2 relevant nodes arranged in �ln N components,
with the number of components of size l being Poisson dis-
tributed with a mean 1/ l. The nonrelevant nodes sit in trees
rooted in the loops.

Then, we could show that all K=2 critical networks can
be treated by the same calculation. Only for networks con-
sisting only of C1 functions, the step from Eq. �12� to Eq.
�13� cannot be made, since the matrix �BL

h� jk vanishes in this
case. C1-networks are in fact K=1 critical networks, and Eq.
�12� is identical to Eq. �4� in this case. All the other K=2
networks show the same dependence of attractor numbers on
system size, with only the L-dependent prefactor being dif-
ferent �because the matrix �BL

h� jk is different for a different
choice of weights for the update functions�. We saw that the
result of the calculation can be interpreted naturally if the
network has the following properties: �i� Only of the order of
N2/3 nodes are nonfrozen, and at most N1/3 of the nonfrozen
nodes depend on two nonfrozen inputs, while the vast ma-
jority of nonfrozen nodes depends only on one nonfrozen
input. �ii� The nonfrozen part of critical K=2 networks re-
sembles strongly a K=1 critical network. The network is
composed of the order of N1/3 relevant nodes arranged in
�ln N components, with the number of components of size l
being Poisson distributed with a mean 1/ l. �iii� All relevant
components apart from those with a size close to the cutoff
lc�N1/3 are simple loops. �iv� The majority of nonfrozen
nodes are not relevant and sit in trees rooted in relevant
components.

Since the method used in this paper is taylored to the
evaluation of cycles in state space, the scaling of the number
of nonfrozen nodes and of the number of relevant nodes with
N could only be obtained indirectly. Evaluating these scaling
properties to more detail by using methods more suitable to
this purpose could be the next step in understanding Kauff-
man networks.
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